

South Deschutes County Ground Water Conditions

High Groundwater Technical Committee November 19, 2008

David S. Morgan Oregon Water Science Center

U.S. Department of the Interior U.S. Geological Survey

Outline

Reasons for concern
What has been learned
Available tools
Capabilities and limitations of tools
Discussion

Drinking Water is Vulnerable

- Thin, volcanic soils; shallow water table
- Most homes have OWS & individual well
- 50% of wells less than 50 feet deep;
 82% less than 100 feet.

Streams Are Vulnerable

Groundwater discharges to the Deschutes and Little Deschutes Rivers in South Deschutes County

Residential Housing Density

61% of lots less than 1 acre 84% of lots less than 2 acre

Lot size, acres

Hantzche-Finnemore mass balance equation

Minimum lot size ~1.5 - 3 acres

Downtown La Pine Density— Before Sewers Installed

Equivalent to 0.8-acre lot size

Projected Growth

Purpose of study

Understand hydrologic and chemical processes affecting movement and fate of nitrogen within the shallow aquifers of the South Deschutes County (SDC) area

Develop tools (models) to support decisions on protection of water resources

Drilling

Checking core

Geology

Locating private well

3-D Geologic Model

Hydrogeologic Section

Modified after Lite and Gannett (2003)

Geologic Data

Reports from 464 wells to construct 34 2-dimensional cross-sections

Geo-Model

Constructed using cross-sections with Transition Probability geostatistical method

Measuring groundwater level below stream

Measuring groundwater level in well

Hydrology

Map of groundwater flow directions

> Map of groundwater recharge

Recharge

Mean annual recharge (1993-95) 1.5 - 3.0 inches/yr 3.1 - 5.05.1 - 8.08.1 - 11.011.0 - 20.0

From USGS Upper Deschutes basin GW study

Water-table map

Ground-Water/Surface-Water Interaction

Stream-Aquifer Head Gradient Survey

Head gradient

- -0.003 0 (Losing)
- 0-0.03
- 0.03 0.05
- 0.05 0.08
 - Head contours
 - Model boundary

Chemistry

Existing Onsite Systems Nitrate Loading 1960-2005

Nitrogen Dynamics Burgess Road Transect Study

BURGESS TRANSECT

BURGESS TRANSECT

BURGESS TRANSECT

Nitrogen Dynamics Burgess Road Transect Study

Septic Tank Effluent Creates Nitrate Plumes

Oxic-Suboxic Boundary

Thickness of the oxic ground-water zone, in feet below the water table

Conceptual Model: Processes

Water Budget, mean annual

Nitrogen Budget: 2000

Estimated volumes of nitrate going into aquifer storage, denitrified in the sub-oxic zone, and discharged to the near-stream environment, are based on simulation model results.

Note: Assumes no loading from high groundwater lots.

Potential for Discharge of Nitrate to Streams

Transect Sites, Riparian Zone Extent (Extent of Cryaquoli Soils and Water), and Ground-Water Particle Pathlines for Particles that Remain
is Oxic Zones Throughout the Numerical Flow Model Domain near La Pine, Oregon

Depring Review 21 More Converts (inst, and Joint, and Joi

From Conceptual Model to Computer Model

Two Models

Simulation model

- Physically based, includes key processes in conceptual model
- Calibrated and tested
- Use requires special training, experience
- Nitrate Loading Management Model (NLMM)
 - Computes maximum sustainable N-loading by area
 - Incorporates relations between loading and N concentration from simulation model
 - Excel interface, can be used by planning and resource protection agencies

The LINDO[™] solver is implemented in a standard spreadsheet interface (Whats Best![™])

Microsoft Excel - NLMM_3.5.xls														
Ele Edit View Insert Format Tools Data Window Help WB! Adobe PDF Type a question for help													_ 8 ×	
) 😅 🖬 🖪 🗐 🚭 🔍 🖤 🖏 I X 🖻 🛍 • 🛷 🔊 - (* -) §				🖕 Σ 🝷 🛓 🔟 🧸 Ι 🛄 🦓 100% 🔹 🍘 🥊 Arial					• 10 • B I = = = = . • • A • .				
10	🏣 🐜 🐜 🕼 🕼 🏷 🕼 🦓 🌆 🚯 🕅 🖗 Reply with Changes End Review													
с ка														
: 12	1 🔀 🔁 📷 🖕 i 💽 Share As Application 🔊 WebEx Settings 🖕													
	L7 🔻 .	fx		-	_									
	A	8	C	ן ט	E	F	G	Н		J	K	L Includes new		
													straint -	
1	La Pine Nitrate Loading Management Model Version 3.5 Last update:8-21-06								21-06	lots, and cost	factor			
2					CONS	TRAINTS	3						Notes:	
3	GW Quality	Cost Facto	rs	Stream loading reduction			Max loading Reduction		Min Loading Reduxtion			Well c		
4	GW NO3- max, mg/L		per kg/day reduction					Percent		Percent				
5	7 Shallow		1.00 Existing		0 percent			100 Existing		0 Existing				
6	3	3 Deep		1.00 Future					100 Future		0 Future			
Ľ	99 Alternate 1.00 Red					100 High GW					0 High GW		Unmai	
8	RESULTS SUMMARY													
				ĸ	ESULIS	5 SUIVIIVI/								
9	Minimize this:		Existing	Future	Subtotal	Red	Total	River	RIVERS	L. Deschutes	Deschutes	Total		
9 10	Minimize this: Objective function	Base Reduction:	Existing	Future 7.78 65.68	Subtotal 193.46	Red 34.61	Total 228.07	River 43.76	RIVERS Base Poduction:	L. Deschutes	Deschutes 27.49	Total 43.76		
9 10 11 12	Minimize this: Objective function 131 (arbitrary units)	Base Reduction: Remaining	Existing 12 6	Future 7.78 65.68 8.64 38.17 9.14 27.51	Subtotal 193.46 106.82 86.64	Red 34.61 24.53	Total 228.07 131.34 96.73	River 43.76 27.83	RIVERS Base Reduction: Remaining	L. Deschutes 16.27 6.16	Deschutes 27.49 21.67 5.82	Total 43.76 27.83		
9 10 11 12 13	Minimize this: Objective function 131 (arbitrary units)	Base Reduction: Remaining % reduction:	Existing 12 6 5	Future 7.78 65.68 8.64 38.17 9.14 27.51 54% 58%	Subtotal 193.46 106.82 86.64 55%	Red 34.61 24.53 10.09 71%	Total 228.07 131.34 96.73 58%	River 43.76 27.83 15.93 64%	RIVERS Base Reduction: Remaining % reduction	L. Deschutes 16.27 6.16 10.11 38%	Deschutes 27.49 21.67 5.82 79%	Total 43.76 27.83 15.93 64%		
9 10 11 12 13 14	Minimize this: Objective function 131 (arbitrary units)	Base Reduction: Remaining % reduction:	Existing 12 6 5	Future 7.78 [®] 65.68 8.64 [®] 38.17 9.14 [®] 27.51 54% [®] 58%	Subtotal 193.46 106.82 86.64 55%	Red 34.61 24.53 10.09 71%	Total 228.07 131.34 96.73 58%	River 43.76 27.83 15.93 64% Unmgd	RIVERS Base Reduction: Remaining % reduction Base	L. Deschutes 16.27 6.16 10.11 38% Target	Deschutes 27.49 21.67 5.82 79%	Total 43.76 27.83 15.93 64% Optimal		
9 10 11 12 13 14 15	Minimize this: Objective function 131 (arbitrary units) Obs_ID	Base Reduction: Remaining % reduction: MA	Existing 12 5 5 0bs_Type	Future 7.78 65.68 8.64 38.17 9.14 27.51 54% 58% Seqnum	Subtotal 193.46 106.82 86.64 55%	Red 34.61 24.53 10.09 71%	Total 228.07 131.34 96.73 58%	River 43.76 27.83 15.93 64% Unmgd Conc/load	RIVERS Base Reduction: Remaining % reduction Base Conc/load	L. Deschutes 16.27 6.16 10.11 38% Target Reduction	Deschutes 27.49 21.67 5.82 79% Operand	Total 43.76 27.83 15.93 64% Optimal Reduction	2 ma_01	
9 10 11 12 13 14 15 16	Minimize this: Objective function (arbitrary units) Obs_ID 01_e-004756-S	Base Reduction: Remaining % reduction: MA 01_e	Existing 12 5 5 0bs_Type Shallow	Future 7.78 65.68 8.64 38.17 9.14 27.51 54% 58% Seqnum 4756	Subtotal 193.46 106.82 86.64 55%	Red 34.61 24.53 10.09 71%	Total 228.07 131.34 96.73 58% Column	River 43.76 27.83 15.93 64% Unmgd Conc/load 4.67	RIVERS Base Reduction: Remaining % reduction Base Conc/load 389.07	L. Deschutes 16.27 6.16 10.11 38% Target Reduction 285.40	Deschutes 27.49 21.67 5.82 79% Operand <=	Total 43.76 27.83 15.93 64% Optimal Reduction 377.40	2 ma_01 27	
9 10 11 12 13 14 15 16 17	Minimize this: Objective function (arbitrary units) Obs_ID 01_e-004756-S 02_e-004749-S 02_004749-S	Base Reduction: Remaining % reduction: MA 01_e 02_e 03.6	Existing 12 6 5 7 0bs_Type Shallow Shallow	Future 7.78 65.68 8.64 38.17 9.14 27.51 54% 58% Seqnum 4756 4749	Subtotal 193.46 106.82 86.64 55% Layer 2 2 2	Red 34.61 " 24.53 " 10.09 " 71% " Row 48 48 48	Total 228.07 131.34 96.73 58% Column 56 49 50	River 43.76 27.83 15.93 64% Unmgd Conc/load 4.67 0.00	RIVERS Base Reduction: Remaining % reduction Base Conc/load 389.07 1.40	L. Deschutes 16.27 6.16 10.11 38% Target Reduction 285.40 -5.60 2.74	Deschutes 27.49 21.67 5.82 79% Operand <= <=	Total 43.76 27.83 15.93 64% Optimal Reduction 377.40 0.00	2 ma_01 27 C	
9 10 11 12 13 14 15 16 17 18 19	Minimize this: Objective function (arbitrary units) Obs_ID 01_e-004756-S 02_e-004749-S 02_ef-004150-S 02_c004861_S	Base Reduction: Remaining % reduction: MA 01_e 02_e 02_f 02 r	Existing 12 6 5 7 0bs_Type Shallow Shallow Shallow Shallow	Future 7.78 65.68 8.64 38.17 9.14 27.51 54% 58% Seqnum 4756 4749 4150 4951	Subtotal 193.46 106.82 86.64 55% Layer 2 2 2 2	Red 34.61 24.53 10.09 71% Row 48 48 48 42 49	Total 228.07 131.34 96.73 58% Column 56 49 50 51	River 43.76 27.83 15.93 64% Unmgd Conc/load 4.67 0.00 0.00	RIVERS Base Reduction: Remaining % reduction Base Conc/load 389.07 1.40 4.26	L. Deschutes 16.27 6.16 10.11 38% Target Reduction 285.40 -5.60 -2.74	Deschutes 27.49 21.67 5.82 79% Operand <= <= <=	Total 43.76 27.83 15.93 64% Optimal Reduction 377.40 0.00 0.97	2 ma_01 27 C	
9 10 11 12 13 14 15 16 17 18 19 20	Minimize this: Objective function (arbitrary units) Obs_ID 01_e-004756-S 02_e-004749-S 02_ef-004150-S 02_r-004851-S 03_f004355-S	Base Reduction: Remaining % reduction: MA 01_e 02_e 02_f 02_r 03_f	Existing 12 6 5 7 0bs_Type Shallow Shallow Shallow Shallow Shallow Shallow	Future 7.78 65.68 8.64 38.17 9.14 27.51 54% 58% Seqnum 4756 4749 4150 4851 4355	Subtotal 193.46 106.82 86.64 55% Layer 2 2 2 2 2 2	Red 34.61 24.53 10.09 71% Row 48 48 48 42 49 44	Total 228.07 131.34 96.73 58% Column 56 49 50 51 55	River 43.76 27.83 15.93 64% Unmgd Conc/load 4.67 0.00 0.00 0.01 0.21	RIVERS Base Reduction: Remaining % reduction Base Conc/load 389.07 1.40 4.26 1.66 51 54	L. Deschutes 16.27 6.16 10.11 38% Target Reduction 285.40 -2.74 -5.60 -2.74 4.33	Deschutes 27.49 21.67 5.82 79% Operand <= <= <=	Total 43.76 27.83 15.93 64% Optimal Reduction 377.40 0.00 0.97 0.29 45.24	2 ma_01 27 C C C	
9 10 11 12 13 14 15 16 17 18 19 20 21	Minimize this: Objective function (arbitrary units) Obs_ID 01_e-004756-S 02_e-004749-S 02_ef004150-S 02_r-004851-S 03_f004355-S 04_f006576-S	Base Reduction: Remaining % reduction: MA 01_e 02_e 02_f 02_r 03_f 04_f	Existing 12 6 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Future 7.78 65.68 8.64 38.17 9.14 27.51 54% 58% Seqnum 4756 4749 4150 4851 4355 6576	Subtotal 193.46 106.82 86.64 55% Layer 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Red 34.61 24.53 10.09 71% Row 48 48 48 42 49 44 66	Total 228.07 131.34 96.73 58% Column 56 49 50 51 55 76	River 43.76 27.83 15.93 64% Unmgd Conc/load 4.67 0.00 0.00 0.01 0.21 0.21	RIVERS Base Reduction: Remaining % reduction Base Conc/load 389.07 1.40 4.26 1.66 51.54	L. Deschutes 16.27 6.16 10.11 38% Target Reduction 285.40 -2.74 -5.35 44.33 6.46	Deschutes 27.49 21.67 5.82 79% Operand <= <= <= <= <=	Total 43.76 27.83 15.93 64% Optimal Reduction 377.40 0.00 0.97 0.29 45.24 98.46	2 ma_0i 27 C C C	
9 10 11 12 13 14 15 16 17 18 19 20 21 22	Minimize this: Objective function (arbitrary units) Obs_ID 01_e-004756-S 02_e-004749-S 02_ef004150-S 02_r-004851-S 03_f004355-S 04_f-006576-S 05_f-004259-S	Base Reduction: Remaining % reduction: MA 01_e 02_e 02_f 02_r 03_f 04_f 05_f	Existing 12 6 55 0bs_Type Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow	Future 7.78 65.68 8.64 38.17 9.14 27.51 54% 58% Seqnum 4756 4749 4150 4851 4355 6576 4259	Subtotal 193.46 106.82 86.64 555% Layer 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Red 34.61 24.53 10.09 71% Row 48 48 48 42 49 44 66 43	Total 228.07 131.34 96.73 58% Column 56 49 50 51 55 76 59	River 43.76 27.83 15.93 64% Unmgd Conc/load 4.67 0.00 0.00 0.01 0.21 0.21 0.00 0.24	RIVERS Base Reduction: Remaining % reduction Base Conc/load 389.07 1.40 4.26 51.54 51.54 105.46 74.95	L. Deschutes 16.27 6.16 10.11 38% Target Reduction 285.40 -2.74 -5.60 -2.74 4.33 6.46 -24.29	Deschutes 27.49 21.67 5.82 79% Operand <= <= <= <= <= <= <=	Total 43.76 27.83 15.93 64% Optimal Reduction 377.40 0.00 0.97 0.29 45.24 98.46 67.71	2 ma_0(27 C C C 1 1	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	Minimize this: Objective function (arbitrary units) Obs_ID 01_e-004756-S 02_e-004749-S 02_f-004150-S 02_r-004851-S 03_r604355-S 04_f006576-S 05_f-004259-S 05_r-004260-S	Base Reduction: Remaining % reduction: MA 01_e 02_e 02_f 02_r 03_f 04_f 05_f 05_r	Existing 12 6 55 0 0 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 10 10 10 10 10 10 10 10 10 10 10 10	Future 7.78 65.68 8.64 38.17 9.14 27.51 54% 58% Seqnum 4756 4749 4150 4851 4355 6576 4259 4259 4260	Subtotal 193.46 106.82 86.64 555% Layer 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Red 34.61 24.53 10.09 71% Row 48 48 48 42 49 49 44 66 43 43	Total 228.07 131.34 96.73 58% Column 56 49 50 51 55 76 59 60	River 43.76 27.83 15.93 64% Unmgd Conc/load 4.67 0.00 0.00 0.01 0.21 0.21 0.00 0.24 0.30	RIVERS Base Reduction: Remaining % reduction Base Conc/load 389.07 1.40 4.26 51.54 51.54 105.46 74.95 102.34	L. Deschutes 16.27 6.16 10.11 38% Target Reduction 285.40 -2.74 -5.60 -2.74 4.33 6.46 -24.29 3.04	Deschutes 27.49 21.67 5.82 79% Operand <= <= <= <= <= <= <= <= <= <=	Total 43.76 27.83 15.93 64% Optimal Reduction 377.40 0.00 0.97 0.29 45.24 98.46 67.71 95.04	2 ma_0(27 C C C C 1 1 1 1	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 23 24	Minimize this: Objective function [131 (arbitrary units) Obs_ID 01_e-004756-S 02_e-004749-S 02_f-004150-S 02_r-004851-S 03_f-004259-S 04_f-006576-S 05_r-004269-S 05_r-004260-S 06_f-005161-S 05_004000000000000000000000000000000000	Base Reduction: Remaining % reduction: MA 01_e 02_e 02_f 02_r 03_f 04_f 05_f 05_r 06_f	Existing 12 6 55 0bs_Type Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow	Future 7.78 65.68 8.64 38.17 9.14 27.51 54% 58% Seqnum 4756 4749 4150 4851 4355 6576 4259 4260 5161	Subtotal 193.46 106.82 86.64 555% Layer 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Red 34.61 24.53 10.09 71% Row 48 48 48 48 42 49 49 44 66 43 43 52	Total 228.07 131.34 96.73 58% Column 56 49 50 51 55 76 59 60 60 61	River 43.76 27.83 15.93 64% Unmgd Conc/load 4.67 0.00 0.00 0.01 0.21 0.21 0.00 0.24 0.30 1.36	RIVERS Base Reduction: Remaining % reduction Base Conc/load 389.07 1.40 4.26 51.54 51.54 105.46 74.95 102.34 64.46	L. Deschutes 16.27 6.16 10.11 38% Target Reduction 285.40 -2.74 -5.60 -2.74 4.33 6.46 -24.29 3.04 56.10	Deschutes 27.49 21.67 5.82 79% Operand <= <= <= <= <= <= <= <= <= <=	Total 43.76 27.83 15.93 64% Optimal Reduction 377.40 0.00 0.97 0.29 45.24 98.46 67.71 95.04 56.10	2 ma_0(27 C C C 1 1 1 1 1	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 24 24	Minimize this: Objective function 131 (arbitrary units) Obs_ID 01_e-004756-S 02_e-004749-S 02_f004150-S 02_r-004861-S 03_f004355-S 04_f004576-S 05_f004259-S 05_r-004260-S 06_f005161-S 05_f005161-S 05_f005161-S 05_f00515-S 05_f00515-S 05_f005555555555	Base Reduction: Remaining % reduction: MA 01_e 02_e 02_f 02_r 03_f 04_f 05_f 05_r 06_f 06_r	Existing 12 6 5 0bs_Type Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow Shallow	Future 7.78 65.68 8.64 38.17 9.14 27.51 54% 58% Seqnum 4756 4749 4150 4851 4355 6576 4259 4260 5161 5161	Subtotal 193.46 106.82 86.64 55% Layer 2 2 2 2 2 2 2 2 2 2 2 2 2	Red 34.61 24.63 10.09 71% Row 48 48 48 42 49 44 66 43 43 43 43 52 52	AK T Total 228.07 131.34 96.73 58% Column 56 49 50 51 55 76 59 60 61 62	River 43.76 27.83 15.93 64% Unmgd Conc/load 4.67 0.00 0.00 0.01 0.21 0.21 0.00 0.24 0.30 1.36 1.00	RIVERS Base Reduction: Remaining % reduction Base Conc/load 389.07 1.40 4.26 51.54 51.54 105.46 74.95 102.34 64.46 61.78	L. Deschutes 16.27 6.16 10.11 38% Target Reduction 285.40 -2.74 -5.60 -2.74 -5.35 44.33 6.46 -24.29 3.04 -56.10 -53.77	Deschutes 27.49 21.67 5.82 79% Operand <= <= <= <= <= <= <= <= <= <=	Total 43.76 27.83 15.93 64% Optimal Reduction 377.40 0.00 0.97 0.29 45.24 98.46 67.71 95.04 56.10 53.77	2 ma_0(27 C C C C 1 1 1 1	

Constraint values GW conc: 7 mg/L shallow 3 mg/L deep SW discharge: none

Limitations

N-transport in near-stream environment is complex--

- Extent of oxic pathways to stream
- Riparian uptake of water and nutrients
- Steady-state ground-water flow
 - Near-stream flow dynamics, flushing
- Sensitivity to location of constraints
 - Shallow part of system more sensitive—limits loading
- Management area boundaries are not hydrologic, geologic, or chemical boundaries—can lead to sharp changes in loading capacity between areas

Information needs

Ground-water flow and nitrogen dynamics in the near-stream environment

- Better definition of oxic pathways would allow more accurate estimation of N discharge to swtreams
- Evaluation of ET and nutrient uptake in developed and undeveloped near-stream areas.
- Monitoring
 - Sustained, systematic, well-designed

High Groundwater Areas

HG lots (aka "red lots") are included in the NLMM (done for 2005 Advisory Comm.)
NLMM can be used to determine loading capacity of HG areas
Capacity in HG areas will be more sensitive to constraints on N discharge to

streams

Effects of Sewers

- NLMM can be used to estimate how reduction of loading will affect capacity of adjacent areas
- Sewering will decrease recharge
- NLMM can not be used to assess effects on groundwater availability or stream flow
- Would require water budget analysis or new simulation model runs.

